Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Biomed Pharmacother ; 174: 116518, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565057

RESUMO

BACKGROUND: The Calcium-sensing receptor (CaSR) participates in the regulation of gastrointestinal (GI) motility under normal conditions and might be involved in the regulation of GI dysmotility in patients with Parkinson's disease (PD). METHODS: CaSR antagonist-NPS-2143 was applied in in vivo and ex vivo experiments to study the effect and underlying mechanisms of CaSR inhibition on GI dysmotility in the MPTP-induced PD mouse model. FINDINGS: Oral intake of NPS-2143 promoted GI motility in PD mice as shown by the increased gastric emptying rate and shortened whole gut transit time together with improved weight and water content in the feces of PD mice, and the lack of influence on normal mice. Meanwhile, the number of cholinergic neurons, the proportion of serotonergic neurons, as well as the levels of acetylcholine and serotonin increased, but the numbers of nitrergic and tyrosine hydroxylase immunoreactive neurons, and the levels of nitric oxide synthase and dopamine decreased in the myenteric plexus in the gastric antrum and colon of PD mice in response to NPS-2143 treatment. Furthermore, the numbers of c-fos positive neurons in the nucleus tractus solitarius (NTS) and cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) increased in NPS-2143 treated PD mice, suggesting the involvement of both the enteric (ENS) and central (CNS) nervous systems. However, ex vivo results showed that NPS-2143 directly inhibited the contractility of antral and colonic strips in PD mice via a non-ENS mediated mechanism. Further studies revealed that NPS-2143 directly inhibited the voltage gated Ca2+ channels, which might, at least in part, explain its direct inhibitory effects on the GI muscle strips. INTERPRETATION: CaSR inhibition by its antagonist ameliorated GI dysmotility in PD mice via coordinated neuronal regulation by both ENS and CNS in vivo, although the direct effects of CaSR inhibition on GI muscle strips were suppressive.

2.
Front Neurosci ; 18: 1210447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356648

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.

3.
NPJ Biofilms Microbiomes ; 10(1): 14, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402294

RESUMO

Dental caries, a highly prevalent oral disease, impacts a significant portion of the global population. Conventional approaches that indiscriminately eradicate microbes disrupt the natural equilibrium of the oral microbiota. In contrast, biointervention strategies aim to restore this balance by introducing beneficial microorganisms or inhibiting cariogenic ones. Over the past three decades, microbial preparations have garnered considerable attention in dental research for the prevention and treatment of dental caries. However, unlike related pathologies in the gastrointestinal, vaginal, and respiratory tracts, dental caries occurs on hard tissues such as tooth enamel and is closely associated with localized acid overproduction facilitated by cariogenic biofilms. Therefore, it is insufficient to rely solely on previous mechanisms to delineate the role of microbial preparations in the oral cavity. A more comprehensive perspective should involve considering the concepts of cariogenic biofilms. This review elucidates the latest research progress, mechanisms of action, challenges, and future research directions regarding probiotics, prebiotics, synbiotics, and postbiotics for the prevention and treatment of dental caries, taking into account the unique pathogenic mechanisms of dental caries. With an enhanced understanding of oral microbiota, personalized microbial therapy will emerge as a critical future research trend.


Assuntos
Cárie Dentária , Microbiota , Probióticos , Simbióticos , Feminino , Humanos , Prebióticos , Cárie Dentária/prevenção & controle , Probióticos/uso terapêutico , Boca
4.
J Fungi (Basel) ; 10(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392812

RESUMO

Lithium chloride (LiCl) has been used in signalling and molecular studies of animals, plants, and yeast. However, information on its roles in basidiomycetous fungi is still limited. In this study, we used RNA-Seq to study the effects of LiCl on Coprinopsis cinerea. LiCl enhanced mycelial growth and inhibited fruiting body formation in C. cinerea. RNA-Seq of the LiCl-treated C. cinerea resulted in a total of 14,128 genes. There were 1199 differentially expressed genes (DEGs) between the LiCl-treated samples and control samples in the mycelium stage (the first time point), and 1391 DEGs were detected when the control samples were forming hyphal knots while the treated samples were still in the mycelium (the second time point). Pathway enrichment analysis of the DEGs revealed a significant association between enhanced mycelium growth in the LiCl-treated C. cinerea and metabolic pathways. In addition, the DEGs involved in cellular process pathways, including "cell cycle-yeast" and "meiosis-yeast", were identified in suppressed C. cinerea fruiting body formation by LiCl under favourable environmental conditions. As LiCl can predominantly inhibit the activity of glycogen synthase kinase3 (GSK3), our findings suggest that LiCl affects the expression of genes involved in fruiting body initiation and cellular processes by inhibiting GSK3 activity which is essential for fruiting body formation.

5.
Food Chem Toxicol ; 185: 114499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309685

RESUMO

Food products simultaneously containing both food contaminants and emulsifiers are common in baked products, coffee and chocolate. Little is known regarding how food contaminants and emulsifiers interact and alter toxicity. Recent studies have shown that while emulsifiers themselves have little toxicity, they could cause changes in the gut microenvironment and lead to issues such as increased uptake of allergens. This study examined toxic effect of two common process contaminants acrylamide (AA) and benzo [a]pyrene (BAP) combined with food emulsifiers polyoxyethylene sorbitan monooleate (TW) or glycerol monostearate (G). In liver cell line HepG2 and gastrointestinal cell lines HIEC6 and Caco-2, toxicities of AA and BAP were increased by TW but not by G as indicated by decrease in IC50 values. Addition of TW also exacerbated gene expression changes caused by AA or BAP. Cellular uptake and cell membrane permeability were enhanced by TW but not by G, but tight junction proteins of Caco-2 monolayer was impacted by both emulsifiers. These results suggested that TW could increase toxicity of AA and BAP through increasing cell permeability thus chemical uptake and potentially through other interactions. The study is to draw the attention of regulators on the potential synergistic interaction of co-occurring chemicals in food.


Assuntos
Chocolate , Alimentos , Humanos , Células CACO-2 , Café , Transporte Biológico , Acrilamida/toxicidade , Benzo(a)pireno
6.
Int J Biol Macromol ; 259(Pt 1): 128872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154720

RESUMO

Microparticle-enhanced cultivation was used to enhance the production of exopolysaccharides (EPSs) from Antrodia cinnamomea. The structure and antibacterial activity of two EPSs produced by A. cinnamomea treated with Al2O3 [EPS-Al (crude) and EPS-Al-p (purified)] and without Al2O3 [EPS-C (crude) and EPS-C-p (purified)] were compared. It was observed that the addition of 4 g/L Al2O3 at 0 h resulted in the highest EPS yield of 1.46 g/L, possible attributed to the enhanced permeability of the cell membrane. The structural analysis revealed that EPS-C-p and EPS-Al-p had different structures. EPS-C-p was hyperbranched and spherical with a Mw of 10.8 kDa, while EPS-Al-p was irregular and linear with a Mw of 12.5 kDa. The proportion of Man in EPS-Al-p decreased, while those of Gal and Glc increased when compared to EPS-C-p. The total molar ratios of 6-Glcp and 4-Glcp in EPS-Al-p are 1.45 times that of EPS-C-p. Moreover, EPSs could alter bacterial cell morphology, causing intracellular substance leakage and growth inhibition, with EPS-Al having a stronger antibacterial activity than EPS-C. In conclusion, A. cinnamomea treated with Al2O3 could produce more EPSs, changing monosaccharide composition and glycosidic linkage profile, which could exert stronger antibacterial activity than that produced by untreated A. cinnamomea.


Assuntos
Antrodia , Polyporales , Humanos , Polyporales/metabolismo , Monossacarídeos/análise , Antrodia/química , Polissacarídeos Bacterianos/química
7.
Heliyon ; 9(11): e22479, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045130

RESUMO

With WHO announcing COVID-19 no longer as a public health emergency of international concern (PHEIC) on May 5, 2023, coupled with the fact that the majority of the countries of the world have dropped strict city lockdown or border closure, this perhaps signals the end of the COVID-19 crisis caused by the SARS-CoV-2 virus. However, the COVID-19 pandemic has resulted in far-reaching effects affecting nearly every aspect of our lives and society. Notably, the food industry including agriculture, food manufacturers, food logistics, distributors and retailers have all felt the profound impact and had experienced significant stress during the pandemic. Therefore, it is essential to retrospect the lessons that can be learned from this pandemic for the food industry. This short review aims to address the food safety issues related to the COVID-19 pandemic by focusing on its foodborne transmission potential, innovations of virus detection strategies suitable for food industry; development of phathogenicaidal methods and devices to inactivate SARS-CoV-2 virus (particularly in industrial scale); and the set-up of related food regulations and guidelines as preventive and control measures for preventing the spread of SARS-CoV-2 virus through the food supply chain during the pandemic. This article may provide useful references for the food industry to minimize the food safety impact of COVID-19 (as well as other respiratory virus) and allows them to better prepare for similar future challenges.

8.
Food Funct ; 14(17): 7912-7923, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37548291

RESUMO

The aim of this study was to investigate the structural characteristics and in vitro fermentation patterns of polysaccharides from Boletus mushrooms. Polysaccharides were solubilized from fruit bodies of selected mushrooms Boletus auripes, B. bicolor, and B. griseus using subcritical water extraction. Boletus polysaccharides were characterized for their general physicochemical pattern, constituent monosaccharides and molecular weight. A simulated in vitro fermentation model was used to study the utilization of Boletus polysaccharides by the gut microbiota and their consequent modulation of microbial communities. Results showed that the main constituent monosaccharides of Boletus polysaccharides were glucose, galactose and mannose, followed by fucose, xylose and rhamnose, with glucose being the most abundant. The polysaccharides from B. bicolor and B. griseus exhibited a relatively high proportion of galactose and mannose, respectively. Boletus polysaccharides exhibited a wide range of molecular weights (5 kDa to 2000 kDa), which covered multiple polysaccharide populations, but the proportions of these populations varied among the samples. Boletus polysaccharides were gradually utilized by the human fecal microbiota, promoting the production of SCFAs. Boletus polysaccharides contributed to a healthier gut microbiota composition by increasing the relative abundance of beneficial bacterial genera such as Bacteroides and Faecalibacterium and reducing the relative abundance of harmful bacterial genera such as Sutterella and Escherichia-Shigella. B. bicolor polysaccharides showed better fermentability and prebiotic effects than the other Boletus polysaccharide groups. Therefore, the consumption of select Boletus mushrooms, particularly B. bicolor, could be a potential approach to obtain polysaccharides for microbiota modulation and to support gut health.


Assuntos
Agaricales , Humanos , Fermentação , Galactose , Manose , Polissacarídeos/química , Monossacarídeos , Glucose , Ácidos Graxos Voláteis
9.
Biomed Pharmacother ; 165: 115100, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418977

RESUMO

The use of oral agents that can modify the gut microbiota (GM) could be a novel preventative or therapeutic option for Parkinson's disease (PD). Maslinic acid (MA), a pentacyclic triterpene acid with GM-dependent biological activities when it is taken orally, has not yet been reported to be effective against PD. The present study found both low and high dose MA treatment significantly prevented dopaminergic neuronal loss in a classical chronic PD mouse model by ameliorating motor functions and improving tyrosine hydroxylase expressions in the substantia nigra pars compacta (SNpc) and increasing dopamine and its metabolite homovanillic acid levels in the striatum. However, the effects of MA in PD mice were not dose-responsive, since similar beneficial effects for low and high doses of MA were observed. Further mechanism studies indicated that low dose MA administration favored probiotic bacterial growth in PD mice, which helped to increase striatal serotonin, 5-hydroxyindole acetic acid, and γ-aminobutyric acid levels. High dose MA treatment did not influence GM composition in PD mice but significantly inhibited neuroinflammation as indicated by reduced levels of tumor necrosis factor alpha and interleukin 1ß in the SNpc; moreover, these effects were mainly mediated by microbially-derived acetic acid in the colon. In conclusion, oral MA at different doses protected against PD via distinct mechanisms related to GM. Nevertheless, our study lacked in-depth investigations of the underlying mechanisms involved; future studies will be designed to further delineate the signaling pathways involved in the interactive actions between different doses of MA and GM.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Doença de Parkinson/metabolismo , Substância Negra , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo
11.
Food Res Int ; 160: 111670, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076383

RESUMO

Only a few species of swiftlets in the Aerodramus and Collocalia genera can produce edible bird's nests (EBN). These saliva-cemented nests have been consumed as delicacies for centuries in Asia. Many researches have reported the aqueous extract of EBN has epidermal growth factor-like (EGF-like) activity. However, no standalone EGF has been identified in EBN. Moreover, proteome of EBN remained unclear due to lack of genomic data base of an EBN-producing swiftlet to support proteomic analysis of EBN. To address this, the first genome of the EBN-producing swiftlet, Aerodramus fuciphagus, was constructed. Orthology comparison of A. fuciphagus with 10 other avian species were conducted. The results revealed that the number of predicted paralogous coiled-coil domain-containing protein 63 (CCDC63) coding sequences (CDSs) in A. fuciphagus was found to be significantly expanded in comparison to Gallus gallus. There were 3 paralogous CCDC63 genes in the genome of A.fuciphagus. The CDSs predicted from the genome of A. fuciphagus were used to construct a database for proteomic analysis of EBN. In total, 398 proteins have been identified in EBN. The proteome of EBN was significant enriched with extracellular proteins as well as proteins related to extracellular matrix (ECM) organization and immune response. A few proteins with Ca2+-binding EGF-like domains were found in the proteome of EBN, like fibrillin-1, protocadherin fat 4 and coagulation factor X. No standalone EGF protein was identified. This indicated that the proteins with EGF-like domains might be responsible for the EGF-like activity of EBN. In addition, acidic mammalian chitinase and lysyl oxidase in EBN were found to be active when extracting with distilled water at room temperature. The current study has not just revealed the species-specific genotype of the EBN-producing swiftlet, A. fuciphagus, but also revealed the proteome of EBN. This established an important foundation for subsequently studies on efficacies of EBN.


Assuntos
Proteoma , Proteômica , Animais , Aves/genética , Aves/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Genótipo , Mamíferos , Proteoma/genética , Proteoma/metabolismo
12.
PLoS One ; 17(9): e0274498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36103496

RESUMO

OBJECTIVES: To assess impacts of early detection and prompt antiretroviral therapy (ART) on the latest epidemiologic situation to inform intervention strategy. METHODS: We analysed data from two clinical cohorts in Hong Kong where sexual transmission accounted for the majority of HIV infections. The two cohorts comprised patients newly diagnosed in 2007-2008 and 2016-2018 respectively. Secular trend and differences between men who have sex with men (MSM) and heterosexual patients were examined. Predictors of late presentation (defined as CD4 ≤350 or AIDS-defining illness within 3 months of diagnosis) and prolonged interval between diagnosis and ART initiation were assessed by multivariable regressions. RESULTS: There were 1,136 newly diagnosed HIV patients with 644 in the first and 492 in the second cohort, a majority (91.7%) presented with sexually acquired infection. There were less MSM in the first than the second cohort (50.3%% vs 87.8%, χ2 = 117.05, p<0.001). The mean (SD) number of days between diagnosis and ART initiation decreased from 514.3 (516.1) to 61.8 (94.2) days across the two cohorts. Younger age, non-Chinese, outpatient-based service and lower CD4 count were predictors of faster ART initiation in the first but not in the second cohort. Interval between diagnosis and ART initiation became highly uniform among groups in the second cohort. Nearly 60% were classified as late presenters in both cohorts. Heterosexuals (aOR 1.58, 95% CI 1.13-2.19) had a higher risk of late presentation. CONCLUSIONS: There was remarkable improvement in acceleration of ART initiation. Clinical implementation of accelerated ART recommendations has been effective for both MSM and heterosexuals. Late presentation was more marked among heterosexuals and remained a problem. The continued phenomenon of late presentation could offset the epidemiologic gains from accelerated ART initiation.


Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Contagem de Linfócito CD4 , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Homossexualidade Masculina , Hong Kong/epidemiologia , Humanos , Masculino
14.
Bioresour Technol ; 361: 127694, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905882

RESUMO

The process water (PW) from acid-catalyzed hydrothermal carbonization (HTC) is still an environmental burden due to the enriched organics, nutrients, and salts. This study proposed a novel strategy to valorize food waste digestate into multifunctional hydrochar by recirculating the PW in the HCl-catalyzed HTC process. The produced multifunctional hydrochar could be utilized as a high-quality solid fuel with HHV of 27.9 MJ kg-1 (hydrochar without PW recirculation) and a slow-release fertilizer by converting the complex Ca and P compounds from the food waste digestate into a Ca-P deposit (hydroxyapatite) with more than a 93 % P recovery rate (hydrochar with PW recirculation). Adding fresh HCl in the HTC PW recirculation system only displayed a marginal catalytic impact on the hydrochar properties after two cycles of recirculation. This study demonstrated the importance of inherent Ca in the feedstocks and the dual role of HCl in the HTC with PW recirculation.


Assuntos
Eliminação de Resíduos , Água , Anaerobiose , Carbono , Catálise , Alimentos , Nutrientes , Temperatura
15.
Front Public Health ; 10: 925600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719672

RESUMO

People living with human immunodeficiency virus (PLHIV) constitute a unique group at higher risk of hepatitis C virus (HCV) co-infection. In light of the diverse profiles of PLHIV, we differentiated between men who have sex with men (MSM) and non-MSM in the characterization of the epidemiologic features of HIV/HCV co-infection. Clinical data of HCV co-infection patients from the HIV specialist clinic in Hong Kong were retrospectively collected in conjunction with their HIV subtypes and HCV genotypes. Logistic regression models were used to identify factors associated with HIV/HCV co-infection in MSM. Survival analysis was performed to compare the time lag between HIV and HCV diagnoses between two groups. Latent class analysis was conducted to describe the features of different classes of co-infections. Four classes of HIV/HCV co-infections were identified: local MSM acquiring HCV after HIV diagnosis, local MSM with HIV/HCV co-diagnoses, local non-MSM, and non-local non-MSM. Accounting for over half of the co-infections, MSM were more likely to be younger, local residents, and associated with HCV genotype 3, compared to genotypes 1 and 6 in non-MSM. Overall, MSM had higher odds of achieving HIV viral suppression and co-diagnosing with a sexually transmitted infection at HCV diagnosis, and having a longer time lag between HIV and HCV diagnoses. Drug injection accounted for a majority of non-MSM HCV infection. There were distinctive epidemiologic differences between MSM and non-MSM co-infected with HIV and HCV, the characteristics of which could inform intervention strategies for achieving HCV micro-elimination.


Assuntos
Coinfecção , Infecções por HIV , Hepatite C , Minorias Sexuais e de Gênero , Coinfecção/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Hepacivirus/genética , Hepatite C/epidemiologia , Homossexualidade Masculina , Humanos , Masculino , Estudos Retrospectivos
16.
Bioresour Technol ; 357: 127376, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35623603

RESUMO

Lignocellulosic paper waste constitutes a major waste stream globally, which should be valorised for chemical production. However, paper properties (e.g., feedstock composition, cellulosic crystallinity, and thermal stability/degradability) vary with raw materials and pulping processes. This study investigated levulinic acid (LA), hydroxymethylfurfural (HMF), and furfural production by H2SO4 and FeCl3 catalysed conversion of nine types of paper wastes in a green solvent system (1:1 γ-valerolactone/water). At 160-180 °C for 1-20 min, ∼23-27 wt% LA yield was achieved from sanitary papers, tracing/parchment paper, and paper food box mainly containing crystalline cellulose, while a lower LA yield (∼10-20 wt%) was obtained from other paper wastes with high contents of ash and lignin. A higher selectivity towards HMF (∼12 mol%) was achieved in the presence of FeCl3. A furfural yield of âˆ¼ 4-7.5 wt% was also obtained from the hemicellulose content. This study elucidates crucial factors and desirable characteristics of paper waste for catalytic valorisation.


Assuntos
Furaldeído , Ácidos Levulínicos , Cloretos , Compostos Férricos , Furaldeído/análogos & derivados , Furaldeído/química , Lignina/química
17.
Antioxidants (Basel) ; 11(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35624828

RESUMO

Selenium nanoparticles (SeNPs) are a novel elemental form selenium and often reported to possess beneficial bioactivities such as anticancer, promoting bone growth and immunomodulation. Our previous study demonstrated that chitosan-stabilized SeNPs have strong activity in immunomodulation. However, the mechanism underlying the immunomodulation of SeNPs is still unknown. The aim of this study is to identify the molecular mechanisms involved in SeNP-induced immunomodulation. Using zebrafish, as a common immunological animal model with a highly conserved molecular mechanism with other vertebrates, we conducted serum proteomic and tissue transcriptome analyses on individuals fed with SeNP in healthy or disease conditions. We also compared differences between SeNPs and an exogenous antioxidant Trolox in immune activity and redox regulation. Our results suggest that the immunomodulation activity was highly related to antioxidant activity and lipid metabolism. Interestingly, the biological functions enhanced by SeNP were almost identical in the healthy and disease conditions. However, while the SeNP was suppressing ROS in healthy individuals, it promoted ROS formation during disease condition. This might be related to the defense mechanism against pathogens. SOD and NFkß appeared to be the key molecular switch changing effect of SeNPs when individuals undergo infection, indicating the close relationship between immune and redox regulation.

18.
AIDS ; 36(9): 1255-1264, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35466962

RESUMO

OBJECTIVE: People with HIV (PWH) co-infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are at higher odds of severe diseases. Whereas the immunogenicity of mRNA vaccine and adenovirus-vectored vaccine was similar between PWH in stable condition and healthy adults, the effects of inactivated vaccines are not known. DESIGN: Prospective longitudinal observational study in real-world setting. METHODS: Adult PWH in care and planning to receive either inactivated (day 0 and day 28) or mRNA-based (day 0 and day 21) vaccine against SARS-CoV-2 were recruited, with blood samples collected over 6 months for surrogate virus neutralization test (sVNT). Demographic and clinical data including age, sex, CD4 + cell count, and suppressed viral load (SVL) status were transcribed for analyses, by simple and multivariable linear regression models, and multivariable linear generalized estimating equations (GEE). RESULTS: A total of 611 HIV patients, 91% male patients, were recruited, of whom 423 and 184 have received mRNA-based and inactivated vaccine, respectively. The seroconversion rate was 99% for mRNA-based vs, 86% for inactivated vaccine [odds ratio (OR) = 21.56, P  = 0.004]. At 6 months, mRNA-based vaccine continued to give a higher response (94 vs. 57%, P  < 0.001). The temporal pattern varied between the two vaccines. By GEE, mRNA-based vaccine ( B  = 40.59, P  < 0.001) and latest SVL status ( B  = 10.76, P  = 0.01) were positively associated with sVNT level, but not latest CD4 + cell count. CONCLUSION: In HIV patients, inactivated vaccine gave a lower peak and shorter duration of sVNT responses compared with mRNA vaccine. The results suggested that different strategies may be needed in boosting the immunity in anticipation of the emergence of variants in the community.


Assuntos
COVID-19 , Infecções por HIV , Vacinas Virais , Adulto , Anticorpos Antivirais , Vacinas contra COVID-19 , Feminino , Infecções por HIV/complicações , Humanos , Masculino , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas de Produtos Inativados , Vacinas Sintéticas , Vacinas de mRNA
19.
Food Res Int ; 155: 111067, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400445

RESUMO

Gut microbiota (GM) dysbiosis plays key roles in aggravating Parkinson's disease (PD) and discovery of agents targeting GM may open new avenues for PD therapy. This study aims to investigate the potentially neuroprotective effects and underlying mechanisms of polymannuronic acid (PM) or Lacticaseibacillus rhamnosus GG (LGG), or their combination in a chronic PD mice model. Our results found oral administration of prebiotic PM or LGG separately or in combination for 5 weeks could prevent dopaminergic neuronal loss via improving reduced walking distance and activity or weakened muscle strength in behavior tests by enhancing tyrosine hydroxylase (TH) gene and/or protein expressions in the midbrain and striatum of PD mice. Strikingly, PM and LGG in combination had a much better neuroprotective effects than separate PM or LGG. PM provided neuroprotection via a short chain fatty acids (SCFAs)-mediated anti-inflammation and anti-apoptosis mechanism. The neuroprotective effects of LGG might be associated with its ability to improve the expression of striatal glial cell-derived neurotrophic factor (GDNF) and to increase bacteria abundance of Clostridiales. When PD mice were administered with PM + LGG, PM as prebiotic favored bacterial growth (from Bacilli class to Lactobacillus genus) in the colon, which helped to improve blood brain barrier (BBB) integrity and increase brain-derived neurotrophic factor (BDNF) and GDNF expressions, thereby inhibiting apoptosis in the striatum. In conclusion, PM and LGG in combination promoted their separate neuroprotection against PD. Our study discovered and testified a novel synbiotic that might be one of the ideal oral agents for PD therapy.


Assuntos
Lacticaseibacillus rhamnosus , Fármacos Neuroprotetores , Doença de Parkinson , Probióticos , Simbióticos , Ácido Algínico , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , Prebióticos , Probióticos/farmacologia
20.
J Agric Food Chem ; 70(1): 21-33, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936332

RESUMO

Termitomyces are well-known wild edible and medicinal basidiomycete mushrooms. The frequent consumption of Termitomyces stimulated studies on their health-promoting properties. Numerous health benefits of Termitomyces are associated with the main categories of components in Termitomyces, polysaccharides. Although the homopolysaccharides ß-glucans are believed to be the major bioactive polysaccharides of Termitomyces, other heteropolysaccharides also possess biological activities. In this review, the extraction methods, chemical structures, and biological activities of polysaccharides from Termitomyces were thoroughly reviewed. The polysaccharides from different species of Termitomyces differ in molecular weight, monosaccharide composition, and linkages of constituent sugars. The health-promoting effects, including antioxidation, ulcer-healing and analgesic properties, immunomodulation, hypolipidemic and hepatoprotective effects, and antidiabetic properties of Termitomyces polysaccharides were summarized and discussed. Further studies were needed for a better understanding of the relationship between the fine chemical structure and health-promoting properties. This review provides a theoretical overview for future studies and utilization of Termitomyces polysaccharides.


Assuntos
Agaricales , Basidiomycota , Termitomyces , beta-Glucanas , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...